Lipase Immobilization Based On Biopolymer
Abstract
Lipase (EC 3.1.1.3) or also known as glycerol ester hydrolases are a class of enzyme to break down the hydrolysis of triglycerides into diglycerides, monoglycerides, free fatty acids, and glycerol. The usage of the biopolymer-based carrier in enzyme immobilization has advantages in terms of cheap, being obtained easily and practical. The purpose of this study is using natural polymers such as tapioca starch, gelatin, sodium alginate, and chitosan as lipase immobilization carrier which further analyzed in enzymatic activity assay, enzyme stability, enzyme storage and polymer functional group analysis using FTIR. The natural polymer could be used for lipase immobilization as a result of this study. Immobilized lipase with aminated tapioca starch biopolymer has the highest activity among all biopolymer which is 1.308,7 U/ml with the protein content of 0,207 mg/ml. FTIR result showed a bond formation on (N-H), (CN), (C-H) group in immobilized lipase. Enzyme recovery and immobilized lipase storagetesting with aminated tapioca starch resulted in the highest relative activity on 96,4% and 83,7%.
References
Bora, L. Bora, M. 2012. Optimization Of Extracellular Thermophilic Highly Alkaline Lipase
From Thermophilic Bacillus Sp Isolated From Hotspring Of Arunachal Pradesh, India. Brazilian
Journal of Microbiology, 30-42.
Sharma, R. Chisti, Y. and Banerjee, U. C. 2001. Production, purification, characterization, and
applications of lipases. Biotechnology Advances, 70 :1-15.D
Ma, F. and Hanna, M. A.. 2002. Biodiesel production: a review. Technology, 67(6):2138–2142.
Ghaly, A. E. Dave, D. Brooks, M.S. and Budge, S. 2010. Production of Biodiesel by Enzymatic
Transesterification: Review. American Journal of Biochemistry and Biotechnology, 6 (2): 54-76
Lee, K. Y. and Mooney, D. J. 2012. Alginate: properties and biomedical applications. Prog Polym
Sci, 37(1): 106–126.
Minovska, V. Winkelhausen, E. and Kuzmanov, S. 2005. Lipase Immobilized by different
techniques on various support materials applied in oil hydrolysis. J. Serb. Chem. Soc, 70 (4): 609–
Ramani, K. Chockalingam, E. and Sekaran, G. 2010. Production of a novel extracellular acidic
lipase from Pseudomonas gessardii using slaughterhouse waste as a substrate. J Ind Microbiol
Biotechnol. 37:531–535.
Bayoumi, R.A. Atta, H.M. and El-Sehrawy, M.H. 2012. Bioremediation of Khormah Slaughter
House Wastes by Production of Thermoalkalistable Lipase for Application in Leather Industries.
Life Science Journal, 9(4).
Houde, A. Kademi, A. and Leblanc, D. 2004. Lipases and Their Industrial Applications. Applied
Biochemistry and Biotechnology, Vol. 118.
Fukuda, H. Kondo, A. and Noda, H. 2001. Biodiesel Fuel Production by Transesterification
of Oils. Journal Of Bioscience And Bioengineering, Vol. 92, No. 5,405-416.
Souza, R. R. Ferreira, R. D. M. T. and Elias, B. 2014. Immobilization of Lipase from Candida
Rugosa on Hydrophobic and Mesoporous Support by Adsorption (MCM 41). Chemical
Engineering Transactions, Vol, 37: 565-570.
Zhang, L. Zhang, W. Yin, F. Zhou, X. Li, J. Xu, R. Chen, Y. and Liu, S. 2010. Lipase Catalyzed
Production of Biodiesel. Laboratory of Advanced Technique and Preparation for Renewable
Energy Materials. 978-1-4244-4813-5.
Mohamad, N. R. Marzuki, N. H. C. Buang, N. A. H. F. and Wahab, R. A. 2015. An overview of
technologies for immobilization of enzymes and surface analysis techniques for immobilized
enzymes. Biotechnology & Biotechnological Equipment, Vol. 29, No. 2, 205220.K
Christensen, M. W. Andersen, L. and Husum, T. L. Kirk, O. 2003. Industrial lipase
immobilization. Eur. J. Lipid Sci. Techno, 105 : 318–321.
Ren, Y. Rivera, J. G. He, L. Kulkarni, H. Lee, D. K. and Messersmith, P. B. 2011. Facile, high
efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a
biomimetic coating. BMC Biotechnology, 11:63.
Datta, S. Christena, L. R. and Rajaram,Y. R. S. 2013. Enzyme immobilization: an overview on
techniques and support materials. Biotech, 3:1–9.
Nigam, S. Mehrotra, S. Vani, B. and Mehrotra, R. 2014. Lipase Immobilization Techniques for
Biodiesel Production: An Overview. International Journal of Renewable Energy & Biofuels, Vol
Cheetham, P. S. J. Blunt, K. W. and Bucke, C. 1979. Physical Studies on Cell Immobilization
Using Calcium Alginate Gels. Biotechnology and Bioengineering, Vol. XXI, Pp. 2155-2 168.
Klibanov, A. M. 2014. Immobilized Enzymes and Cells as Practical Ctalysts. Science, Vol 219.
Malcata, F. X. Reyes, H. R. Garcia, H. S. Hill, C. G. and Amundson, C. H. A. 1990. Immobilized
Lipase Reactors for Modification of Fats and Oils-A-Review. JADCS, Vol 97, No 12.
Zhao, X. Qi, F. Yuan, C. Du, W. and Liu, D. 2015. Lipase-catalyzed process for biodiesel
production: Enzyme immobilization, process simulation and optimization. Renewable and
Sustainable Energy Reviews 44 :182–197.
Fernandez-Lafuente, R. Armisen, P. Sabuquillo, P. Fernandez-Lorente, G. and Guisan., J. M.
Immobilization of lipases by selective adsorption on hydrophobic supports. Chemistry and
Physics of Lipids, 93 :185–19..
Jegannathan, K. R. and Abang, S. 2008. Consumer acceptance meat quality aspects. Production
of Biodiesel Using Immobilized Lipase—A Critical Review. Critical Reviews in Biotechnology,
:253–264.
Gao, W. Diao, X. Luo, G. and Dai, Y. 2010. Effect of pore diameter and cross-linking method on
the immobilization efficiency of Candida rugosa lipase in SBA-15. Bioresour. Technol, Vol 101:
-3837.
Rajendran, A. and Thangavelu, V. 2012. Optimization and Modeling of Process Parameters for
Lipase Production by Bacillus brevis. Food Bioprocess Technol 5:310–322.
Estuğrul, S. Dȍnmez, G. and Takac, S. 2007. Isolation of lipase producing Bacillus sp. from olive
mill wastewater and improving its enzyme activity. Journal of Hazardous Materials. 149 : 720–
Kuhn, J. Müller, H. Salzig, D. and Czermak, P. 2015. A Rapid Method For An Offline Glycerol
Determination During Microbial Fermentation. Electronic Journal of Biotechnology, Vol 18:
–255.
Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram
Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical
Biochemistry (1976) 72, 248-254
Watts, L. W. J. and Austin, T. 1979. United States Patent: Aminated Starch Derivatives.
Texaco Development Corporation, 828,799.
Wongsagon, R. Shobsngob, S. and Varavinit, S. 2005. Preparation and Physicochemical
Properties of Dialdehyde Tapioca Starch. Biotechnology, 166–172
Xie, R. Cui, C. Chen, B. and Tan, T. 2015. Immobilizing Yarrowia lipolytica Lipase Lip2 via
Improvement of Microspheres by Gelatin Modification. Appl Biochem Biotechnol.
Klibanov, A. M. 2014. Immobilized Enzymes and Cells as Practical Ctalysts. Science, Vol 219.
Kavardi, S. S. S. Alemzadeh, I. and Kazemi, A. 2012. Optimization Of Lipase Immobilization.
IJE Transactions C: Aspects, Vol. 25, No. 1.
Bruno, L. M. Filho, J. L. L. and Castro, H. F. 2008. Comparative Performance of Microbial
Lipases Immobilized on Magnetic Polysiloxane Polyvinyl Alcohol Particles. Brazilian Archives
Of Biology And Technology, 51, 5 : 889-896.
Migneault, I. Dartiguenave, C. Bertrand, M. J. and Waldron, K. C. 2004. Glutaraldehyde:
behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking.
BioTechniques 37:790-802.
Nazari, T. Alijanianzadeh, M. Molaeirad, A. and Khayati, M. 2016. Immobilization of Subtilisin
Carlsberg on Modified Silica Gel by Cross-linking and Covalent Binding Methods. Biomacromol.
J., Vol. 2, No. 1, 53-58.
Adlercreutz, P. 2013. Immobilisation and application of lipases inorganic media. Chem.Soc.Rev,
Vol 42, 6406—6436
Betancor, F. Hidalgo, N. A. M. R. Fernández, L. and Guisán, J.M. 2006. Enzyme Microbiology.
Enzyme Tech. 39. 877.
Gallego, F. L. Betancor, L. C. M. Hidalgo, N. A. M. Ortiz, D. Guisán, J.M. and Lafuente, F. J.
Biotechnol. 119. 70.
Nawani, N. Singh, R. and Kaur, J. 2006. Immobilization and stability studies of a lipase from
thermophilic Bacillus sp: The effect of process parameters on immobilization of enzyme.
Electronic Journal of Biotechnology, Vol.9 No.5.
Bello, J. Bello, H. R. and Vinograd, J. R. 1962. The Functional Groups In The Gelation Of
Gelatin. Biochim. Biophys. Acta, 57. 222-229.
Tokuyasu, K. Kaneko, S. Hayashi, K. and Mori, Y. 1899. Production of Recombinant Chitin
Deactylation in the Culture Medium of Escherichia coli Cells. Journal FEBS. 458: 23–26.
Willerding, A. L. Oliveira, L. A. Moreira, F. W. Germano, M. G. and Chagas, A. I. F. 2011.
Lipase Activity among Bacteria Isolated fromAmazonian Soils. SAGE-Hindawi Access to
Research Enzyme Research. Article ID 720194: 5..
Kundu, M. Basu, J. Guchhait, M. and Chakrabarti, P. 1987. Isolation and Characterization of an
Extracellular Lipase from the Conidia of Neurospora crassa. Journal of General Microbiology.
, 149-153.
Kress, J. Zanaletti. R. Amour, A. Ladlow, M. Frey, J.G. and Bradley, M. 2002. Enzyme
accessibility and solid supports: which molecular weight enzymes can be used on solid
supports?An investigation using confocal Raman microscopy. Chem Eur J 8:3769–377.
Homaei, A. A. Sariri, R Vianello, F and Stevanato, R. 2013. Enzyme Immobilization: An Update.
J Chem Biol (2013) 6:185–205.
Krekeler, C. Z. and Klein, J. 1991. Influence of physicochemical bacterial surface properties on
adsorption to inorganic porous supports. Appl. Microbiol. Biotechnol. 35:484-490.
Song, S. H. Choi, S. S. Park, K. and Yoo, Y. Y. 2005. Novel hybrid immobilization of
microorganisms and its applications to biological denitrification. Enzyme Microb. Technol.
:567-573..
Stolarzewicz, I. Bialecka-Florjañczyk, E. Majewska, E. and Krzyczkowska, J. 2011.
Immobilization of yeast on polymeric supports. Chem. Biochem. Eng, Vol, 25:135-144. H.,
D. de Oliveira, M. A. Mazutti, M. Di Luccio, J. V. Oliveira. “A Review on Microbial Lipases
Production”. Food Bioprocess Technol. (2010) 3:182–196.
Martins, S. C. S. Martins, C. M. Fiúza, L. M. C. G. and Santaella, S. T. 2013. Immobilization Of
Microbial Cells: A Promising Tool For Treatment Of Toxic Pollutants In Industrial Wastewater.
Afr. J. Biotechnol. Vol. 12(28), pp. 4412-4418.
Jesionowski, T. Zdarta, J. and Krajewska, B. 2014. Enzyme immobilization by adsorption: a
review. Adsorption: 18 June 2014.
Neelam, K. Vijay, S. and Lalit, Singh. 2012. Various Techniques For The Modification Starch
And The Applications Of Its Derivates. International Research Journal Of Pharmacy, 3 (5).
Ahmad, R. and Sardar, M. 2015. Enzyme Immobilization: An Overview on Nanoparticles as
Immobilization Matrix. Biochem Anal Biochem, Vol 4:2.
Elcin, Y. M. 1995. Encapsulation of Urease Enzyme in Xanthan-Alginate Spheres. Biomaterials,
(15), 1157-1161.
Flores-Maltos, A. Rodríguez-Durán, L. V. Renovato, J. Contreras, J. C. Rodríguez, R. and
Aguilar, C. N. 2011. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase.
Enzyme Research, Vol. 2011: 6.
Sachan, N. K. Pushkar, S. Jha, A. and Bhattcharya, A. 2009. Sodium Alginate: The Wonder
Polymer For Controlled Drug Delivery. Journal of Pharmacy Research, 2(8),1191-1199.
Ali, Z. Tian, L. Zhao, P. Zhang, B. Ali, N. and Khan, M. 2016. Immobilization Of Lipase On
Mesoporous Silica Nanoparticles With Herarchichal Fibrous Pore. Journal of Molecular Catalysis
B:Enzymatic, Vol 134, 129-135.
Nickpour, M. and Pazouki, M. 2014. Synthesis and Characteristics of Mesoporous Sol-gels for
Lipase Immobilization. Ije Transactions A: Basics, Vol. 27, No. 10, 495-1502.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.