Lipase Immobilization Based On Biopolymer

Authors

  • Annysa Nur Mala Sari
  • Maharani Pertiwi Koentjoro
  • Endry Nugroho Prasetyo

Abstract

Lipase (EC 3.1.1.3) or also known as glycerol ester hydrolases are a class of enzyme to break down the hydrolysis of triglycerides into diglycerides, monoglycerides, free fatty acids, and glycerol. The usage of the biopolymer-based carrier in enzyme immobilization has advantages in terms of cheap, being obtained easily and practical. The purpose of this study is using natural polymers such as tapioca starch, gelatin, sodium alginate, and chitosan as lipase immobilization carrier which further analyzed in enzymatic activity assay, enzyme stability, enzyme storage and polymer functional group analysis using FTIR. The natural polymer could be used for lipase immobilization as a result of this study. Immobilized lipase with aminated tapioca starch biopolymer has the highest activity among all biopolymer which is 1.308,7 U/ml with the protein content of 0,207 mg/ml. FTIR result showed a bond formation on (N-H), (CN), (C-H) group in immobilized lipase. Enzyme recovery and immobilized lipase storagetesting with aminated tapioca starch resulted in the highest relative activity on 96,4% and 83,7%.

References

Bora, L. Bora, M. 2012. Optimization Of Extracellular Thermophilic Highly Alkaline Lipase

From Thermophilic Bacillus Sp Isolated From Hotspring Of Arunachal Pradesh, India. Brazilian

Journal of Microbiology, 30-42.

Sharma, R. Chisti, Y. and Banerjee, U. C. 2001. Production, purification, characterization, and

applications of lipases. Biotechnology Advances, 70 :1-15.D

Ma, F. and Hanna, M. A.. 2002. Biodiesel production: a review. Technology, 67(6):2138–2142.

Ghaly, A. E. Dave, D. Brooks, M.S. and Budge, S. 2010. Production of Biodiesel by Enzymatic

Transesterification: Review. American Journal of Biochemistry and Biotechnology, 6 (2): 54-76

Lee, K. Y. and Mooney, D. J. 2012. Alginate: properties and biomedical applications. Prog Polym

Sci, 37(1): 106–126.

Minovska, V. Winkelhausen, E. and Kuzmanov, S. 2005. Lipase Immobilized by different

techniques on various support materials applied in oil hydrolysis. J. Serb. Chem. Soc, 70 (4): 609–

Ramani, K. Chockalingam, E. and Sekaran, G. 2010. Production of a novel extracellular acidic

lipase from Pseudomonas gessardii using slaughterhouse waste as a substrate. J Ind Microbiol

Biotechnol. 37:531–535.

Bayoumi, R.A. Atta, H.M. and El-Sehrawy, M.H. 2012. Bioremediation of Khormah Slaughter

House Wastes by Production of Thermoalkalistable Lipase for Application in Leather Industries.

Life Science Journal, 9(4).

Houde, A. Kademi, A. and Leblanc, D. 2004. Lipases and Their Industrial Applications. Applied

Biochemistry and Biotechnology, Vol. 118.

Fukuda, H. Kondo, A. and Noda, H. 2001. Biodiesel Fuel Production by Transesterification

of Oils. Journal Of Bioscience And Bioengineering, Vol. 92, No. 5,405-416.

Souza, R. R. Ferreira, R. D. M. T. and Elias, B. 2014. Immobilization of Lipase from Candida

Rugosa on Hydrophobic and Mesoporous Support by Adsorption (MCM 41). Chemical

Engineering Transactions, Vol, 37: 565-570.

Zhang, L. Zhang, W. Yin, F. Zhou, X. Li, J. Xu, R. Chen, Y. and Liu, S. 2010. Lipase Catalyzed

Production of Biodiesel. Laboratory of Advanced Technique and Preparation for Renewable

Energy Materials. 978-1-4244-4813-5.

Mohamad, N. R. Marzuki, N. H. C. Buang, N. A. H. F. and Wahab, R. A. 2015. An overview of

technologies for immobilization of enzymes and surface analysis techniques for immobilized

enzymes. Biotechnology & Biotechnological Equipment, Vol. 29, No. 2, 205220.K

Christensen, M. W. Andersen, L. and Husum, T. L. Kirk, O. 2003. Industrial lipase

immobilization. Eur. J. Lipid Sci. Techno, 105 : 318–321.

Ren, Y. Rivera, J. G. He, L. Kulkarni, H. Lee, D. K. and Messersmith, P. B. 2011. Facile, high

efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a

biomimetic coating. BMC Biotechnology, 11:63.

Datta, S. Christena, L. R. and Rajaram,Y. R. S. 2013. Enzyme immobilization: an overview on

techniques and support materials. Biotech, 3:1–9.

Nigam, S. Mehrotra, S. Vani, B. and Mehrotra, R. 2014. Lipase Immobilization Techniques for

Biodiesel Production: An Overview. International Journal of Renewable Energy & Biofuels, Vol

Cheetham, P. S. J. Blunt, K. W. and Bucke, C. 1979. Physical Studies on Cell Immobilization

Using Calcium Alginate Gels. Biotechnology and Bioengineering, Vol. XXI, Pp. 2155-2 168.

Klibanov, A. M. 2014. Immobilized Enzymes and Cells as Practical Ctalysts. Science, Vol 219.

Malcata, F. X. Reyes, H. R. Garcia, H. S. Hill, C. G. and Amundson, C. H. A. 1990. Immobilized

Lipase Reactors for Modification of Fats and Oils-A-Review. JADCS, Vol 97, No 12.

Zhao, X. Qi, F. Yuan, C. Du, W. and Liu, D. 2015. Lipase-catalyzed process for biodiesel

production: Enzyme immobilization, process simulation and optimization. Renewable and

Sustainable Energy Reviews 44 :182–197.

Fernandez-Lafuente, R. Armisen, P. Sabuquillo, P. Fernandez-Lorente, G. and Guisan., J. M.

Immobilization of lipases by selective adsorption on hydrophobic supports. Chemistry and

Physics of Lipids, 93 :185–19..

Jegannathan, K. R. and Abang, S. 2008. Consumer acceptance meat quality aspects. Production

of Biodiesel Using Immobilized Lipase—A Critical Review. Critical Reviews in Biotechnology,

:253–264.

Gao, W. Diao, X. Luo, G. and Dai, Y. 2010. Effect of pore diameter and cross-linking method on

the immobilization efficiency of Candida rugosa lipase in SBA-15. Bioresour. Technol, Vol 101:

-3837.

Rajendran, A. and Thangavelu, V. 2012. Optimization and Modeling of Process Parameters for

Lipase Production by Bacillus brevis. Food Bioprocess Technol 5:310–322.

Estuğrul, S. Dȍnmez, G. and Takac, S. 2007. Isolation of lipase producing Bacillus sp. from olive

mill wastewater and improving its enzyme activity. Journal of Hazardous Materials. 149 : 720–

Kuhn, J. Müller, H. Salzig, D. and Czermak, P. 2015. A Rapid Method For An Offline Glycerol

Determination During Microbial Fermentation. Electronic Journal of Biotechnology, Vol 18:

–255.

Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram

Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical

Biochemistry (1976) 72, 248-254

Watts, L. W. J. and Austin, T. 1979. United States Patent: Aminated Starch Derivatives.

Texaco Development Corporation, 828,799.

Wongsagon, R. Shobsngob, S. and Varavinit, S. 2005. Preparation and Physicochemical

Properties of Dialdehyde Tapioca Starch. Biotechnology, 166–172

Xie, R. Cui, C. Chen, B. and Tan, T. 2015. Immobilizing Yarrowia lipolytica Lipase Lip2 via

Improvement of Microspheres by Gelatin Modification. Appl Biochem Biotechnol.

Klibanov, A. M. 2014. Immobilized Enzymes and Cells as Practical Ctalysts. Science, Vol 219.

Kavardi, S. S. S. Alemzadeh, I. and Kazemi, A. 2012. Optimization Of Lipase Immobilization.

IJE Transactions C: Aspects, Vol. 25, No. 1.

Bruno, L. M. Filho, J. L. L. and Castro, H. F. 2008. Comparative Performance of Microbial

Lipases Immobilized on Magnetic Polysiloxane Polyvinyl Alcohol Particles. Brazilian Archives

Of Biology And Technology, 51, 5 : 889-896.

Migneault, I. Dartiguenave, C. Bertrand, M. J. and Waldron, K. C. 2004. Glutaraldehyde:

behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking.

BioTechniques 37:790-802.

Nazari, T. Alijanianzadeh, M. Molaeirad, A. and Khayati, M. 2016. Immobilization of Subtilisin

Carlsberg on Modified Silica Gel by Cross-linking and Covalent Binding Methods. Biomacromol.

J., Vol. 2, No. 1, 53-58.

Adlercreutz, P. 2013. Immobilisation and application of lipases inorganic media. Chem.Soc.Rev,

Vol 42, 6406—6436

Betancor, F. Hidalgo, N. A. M. R. Fernández, L. and Guisán, J.M. 2006. Enzyme Microbiology.

Enzyme Tech. 39. 877.

Gallego, F. L. Betancor, L. C. M. Hidalgo, N. A. M. Ortiz, D. Guisán, J.M. and Lafuente, F. J.

Biotechnol. 119. 70.

Nawani, N. Singh, R. and Kaur, J. 2006. Immobilization and stability studies of a lipase from

thermophilic Bacillus sp: The effect of process parameters on immobilization of enzyme.

Electronic Journal of Biotechnology, Vol.9 No.5.

Bello, J. Bello, H. R. and Vinograd, J. R. 1962. The Functional Groups In The Gelation Of

Gelatin. Biochim. Biophys. Acta, 57. 222-229.

Tokuyasu, K. Kaneko, S. Hayashi, K. and Mori, Y. 1899. Production of Recombinant Chitin

Deactylation in the Culture Medium of Escherichia coli Cells. Journal FEBS. 458: 23–26.

Willerding, A. L. Oliveira, L. A. Moreira, F. W. Germano, M. G. and Chagas, A. I. F. 2011.

Lipase Activity among Bacteria Isolated fromAmazonian Soils. SAGE-Hindawi Access to

Research Enzyme Research. Article ID 720194: 5..

Kundu, M. Basu, J. Guchhait, M. and Chakrabarti, P. 1987. Isolation and Characterization of an

Extracellular Lipase from the Conidia of Neurospora crassa. Journal of General Microbiology.

, 149-153.

Kress, J. Zanaletti. R. Amour, A. Ladlow, M. Frey, J.G. and Bradley, M. 2002. Enzyme

accessibility and solid supports: which molecular weight enzymes can be used on solid

supports?An investigation using confocal Raman microscopy. Chem Eur J 8:3769–377.

Homaei, A. A. Sariri, R Vianello, F and Stevanato, R. 2013. Enzyme Immobilization: An Update.

J Chem Biol (2013) 6:185–205.

Krekeler, C. Z. and Klein, J. 1991. Influence of physicochemical bacterial surface properties on

adsorption to inorganic porous supports. Appl. Microbiol. Biotechnol. 35:484-490.

Song, S. H. Choi, S. S. Park, K. and Yoo, Y. Y. 2005. Novel hybrid immobilization of

microorganisms and its applications to biological denitrification. Enzyme Microb. Technol.

:567-573..

Stolarzewicz, I. Bialecka-Florjañczyk, E. Majewska, E. and Krzyczkowska, J. 2011.

Immobilization of yeast on polymeric supports. Chem. Biochem. Eng, Vol, 25:135-144. H.,

D. de Oliveira, M. A. Mazutti, M. Di Luccio, J. V. Oliveira. “A Review on Microbial Lipases

Production”. Food Bioprocess Technol. (2010) 3:182–196.

Martins, S. C. S. Martins, C. M. Fiúza, L. M. C. G. and Santaella, S. T. 2013. Immobilization Of

Microbial Cells: A Promising Tool For Treatment Of Toxic Pollutants In Industrial Wastewater.

Afr. J. Biotechnol. Vol. 12(28), pp. 4412-4418.

Jesionowski, T. Zdarta, J. and Krajewska, B. 2014. Enzyme immobilization by adsorption: a

review. Adsorption: 18 June 2014.

Neelam, K. Vijay, S. and Lalit, Singh. 2012. Various Techniques For The Modification Starch

And The Applications Of Its Derivates. International Research Journal Of Pharmacy, 3 (5).

Ahmad, R. and Sardar, M. 2015. Enzyme Immobilization: An Overview on Nanoparticles as

Immobilization Matrix. Biochem Anal Biochem, Vol 4:2.

Elcin, Y. M. 1995. Encapsulation of Urease Enzyme in Xanthan-Alginate Spheres. Biomaterials,

(15), 1157-1161.

Flores-Maltos, A. Rodríguez-Durán, L. V. Renovato, J. Contreras, J. C. Rodríguez, R. and

Aguilar, C. N. 2011. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase.

Enzyme Research, Vol. 2011: 6.

Sachan, N. K. Pushkar, S. Jha, A. and Bhattcharya, A. 2009. Sodium Alginate: The Wonder

Polymer For Controlled Drug Delivery. Journal of Pharmacy Research, 2(8),1191-1199.

Ali, Z. Tian, L. Zhao, P. Zhang, B. Ali, N. and Khan, M. 2016. Immobilization Of Lipase On

Mesoporous Silica Nanoparticles With Herarchichal Fibrous Pore. Journal of Molecular Catalysis

B:Enzymatic, Vol 134, 129-135.

Nickpour, M. and Pazouki, M. 2014. Synthesis and Characteristics of Mesoporous Sol-gels for

Lipase Immobilization. Ije Transactions A: Basics, Vol. 27, No. 10, 495-1502.

Downloads

Published

2020-06-29

How to Cite

Nur Mala Sari, A., Pertiwi Koentjoro, M., & Nugroho Prasetyo, E. (2020). Lipase Immobilization Based On Biopolymer . PROCEEDING SURABAYA INTERNATIONAL HEALTH CONFERENCE 2019, 1(1), 406–418. Retrieved from https://conferences.unusa.ac.id/index.php/SIHC19/article/view/559