Cellulase Pretreatment of Kappaphycus alvarezii polymer for Promising Medical Dressing Application
Abstract
Seaweed contains hydrocolloid polysaccharides which are useful for the application of wound dressing. The use of natural ingredients such as seaweed Kappahycus alvarezii requires pretreatment before it is applied. Pretreatment of seaweed Kappaphycus alvarezii flour was carried out using hydrolyzing enzyme called cellulase. The cellulase (EC 3.2.1.4) is an enzyme which could hydrolyze cellulose polymers thereby breaking β- 1,4 glycosidic bond into oligosaccharide and simple sugars. Meanwhile the cell wall of seaweed could as well be degraded partially by cellulase followed by releasing hydrocolloid polymers (carrageenan) from the inner layer of seaweed cell wall. The aims of this study is to determine the effect of enzymatic pretreatment on seaweed so that it can be useful for further research as one of the promising component in wound dressing. The result showed that the reducing sugar decreased in content of 0.5 mg /ml after enzymatic modification at 0.5 hours incubation time. The FTIR spectra showed shifting at several functional groups namely C-H, C-O-C and C=C.
References
Aramwit P. 2016. Introduction to biomaterials for wound healing. In Wound Healing
Biomaterials (pp. 3-38).
Mogosanu G D, & Grumezescu A. M. 2014. Natural and synthetic polymers for wounds and
burns dressing. Int J Pharm, 463(2), 127-136. doi:10.1016/j.ijpharm.2013.12.015.
Mahdavinia G R, Rahmani Z, Karami S, & Pourjavadi A. 2014. Magnetic/pH-sensitive kappa-
carrageenan/sodium alginate hydrogel nanocomposite beads: preparation, swelling behavior, and
drug delivery. J Biomater Sci Polym Ed, 25(17), 1891-1906.
doi:10.1080/09205063.2014.956166
Kamoun E A, Kenawy E S, & Chen X. 2017. A review on polymeric hydrogel membranes for
wound dressing applications: PVA-based hydrogel dressings. J Adv Res, 8(3), 217-233.
doi:10.1016/j.jare.2017.01.005
Sandeep C, Harikumar SL and Kanupriya. 2012. Hydrogels: A Smart Drug Delivery System.
IJRPC 2(3).
Dhivya S, Saravanan S, Sastry T. P, & Selvamurugan N. 2015. Nanohydroxyapatite-reinforced
chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnology,
, 40. doi:10.1186/s12951-015-0099-z.
Distantina S, Fadilah F, & Kaavessina M. 2016. Swelling Behaviour of Kappa Carrageenan
Hydrogel in Neutral Salt Solution.
Knudsen N R, Ale M T, Meyer A S. 2015. Seaweed Hydrocolloid Production: An Update on
Enzyme Assisted Extraction and Modification Technologies. Mar. Drugs, 13, 3340-3359;
doi:10.3390/md13063340
Abowei J F N, Ezekiel E N. 2013. The potentials and utilization of Seaweeds. Sci. Agri. 4 (2):
-66
Kılınç B, Cirik S, Turan G, Tekogul H., Koru E. 2013. Seaweeds for Food and Industrial
Applications. Intech, Turkey.
Dewi E N, Ibrahim R., Suhartoc S. 2015. Morphological Structure Characteristic And Quality of
Semi Refined Carrageenan Processed By Different Drying Methods. Procedia Environmental
Sciences 23: 116 – 122.
Karaki N, Aljawish A, Humeau C, Muniglia L & Jasniewski J. 2016. Enzymatic modification of
polysaccharides: mechanisms, properties, and potential applications.
Puri M, Sharma D, Barrow C J. 2012. Enzyme-assisted extraction of bioactives from plants.
Trends in Biotechnology, Vol. 30(1).doi:10.1016/j.tibtech.2011. 06.014.
Rabinovich M, Melnik M & Bolobova A. 2002. Microbial cellulases: A review. Appl. Biochem.
Microbiol., 38, 305-321.
Ranveer R C, Patil S N, Sahoo A K. 2013. Effect of different parameters on enzyme-assisted
extractionof lycopene from tomato processing waste. Food and Bioproducts Processing 9(1):
–375.
Karima A, Nurhatika S, and Nugroho Prasetyo E. 2016. Enzymatic Modification of Cellulose
Based Materials for Pomising of Bioethanol Production. IJMSE.
Ghose T.K. 1987. Measurement of Cellulase Activities. Pure Appl Chem 59 (2): 257-268.
Bradford M.M. 1967. A Repaid Sensitive Method for the Guanntification of Microgram
Quantities Of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry
, 248-254.
Ahn C B, Jeon Y J, Kang D S, Shin T S, Jung B M. 2004. Free radical scavenging activity of
enzymatic extracts from a brown seaweed Scytosiphon lomentaria by electron spin resonance
spectrometry. Food Research International 37 (2004) 253–258.
Alrumman S A. 2016. Enzymatic Saccharification And Fermentation Of Cellulosic Date Palm
Wastes To Glucose And Lactic Acid. Brazilian journal of microbiology 4 7 (2 0 1 6) 110–119
Sartori T, Tibolla H, Prigol E, Colla L M, Costa J A V, Bertolin T E. 2014. Enzymatic
Saccharification of Lignocellulosic Residues by Cellulases Obtained from Solid State
Fermentation Using Trichoderma viride. BioMed Research International Volume 2015, Article
ID 342716, http://dx.doi.org/10.1155/2015/342716
Miller G L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar.
Analytical Chemistry, vol. 31, no. 3, pp. 426–428.
Foreman P K, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman N S, Goedegebuur F,
Houfek T D, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA,
Teunissen PJ, Yao J, & Ward M. 2003. Transcriptional Regulation of Biomass Degrading
Enzymes in the Filamentous Fungus Trichoderma reesei. The Journal of Biological Chemistry
Vol.278, No. 34, pp.31988-31997.
Khopkar S M. 1990. Konsep Dasar Kimia Analitik, Terjemahan Basic Concepts of Analytical
Chemistry. Jakarta.: Penerbit Universitas Indonesia.
Foreman PK, Brown D, Dankmeyer L, Dean R, Diener, S., Dunn-Coleman, N.S., Goedegebuur
F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA,
Teunissen PJ., Yao J, & Ward M. 2003. Transcriptional Regulation of Biomass Degrading
Enzymes in the Filamentous Fungus Trichoderma reesei. The Journal of Biological Chemistry
Vol.278, No. 34, pp.31988-31997.
Gritzali M. & Brown R D, Jr. 1979. The cellulase system of Trichoderma : relationship between
purified extracellular enzymes from induced and cellulose grown cells. Advances in Chemistry
Series 181, 237-260.
Mackuľak T, Prousek J, Olejníkováa P, Bodík I. 2013. The Using of Enzymes for Degradation
of Cellulose Substrate for The Production Of Biogas. 2010. In Proceedings of the 37th
International Conference of Slovak Society of Chemical Engineering, Tatranské Matliare,
Slovakia, 1407–1412.
Tanaka M, Ikesaka M, Matsuno R, Converse A.O. 1988. Effect of Pore-Size in Substrate and
Diffusion of Enzyme on Hydrolysis of Cellulosic Materials with Cellulases. Biotechnology and
Bioengineering, 32(5), 698-706.
Rojas O J, Jeong C, Turon X, Argyropoulos DS. 2006. Measurement of Cellulase Activity with
Piezoelectric Resonators. Forest Biomaterials Laboratory, College of Natural Resources, NC
State University, Raleigh, NC 27695.
Pereira L. (2013). Population studies and carrageenan properties in eight Gigartinales
(Rhodophyta) from Western Coast of Portugal. ScientificWorldJournal, 2013, 939830.
doi:10.1155/2013/939830
Vera J, Castro J, Gonzales A, Moenne A. 2011. Seaweed Polysaccharides and Derived
Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants.
Mar. Drugs (2011), 9, 2514-2525.
Rahnama N, Mamat S, Shah U K M, Ling FH, Rahman NA, Ariff A B. 2013. Effect of Alkali
Pretreatment of Rice Straw on Cellulase and Xylanase Production by Local Trichoderma
harzianum SNRS3 under Solid State Fermentation. Bioresources 8(2): 2881-2896.
Ciolacu D, Cilolacu F, & Popa VI 2011. Amorphous Cellulose–Structure and Characterization.
Cellulose Chem. Technol., 45 (1- 2), 13-21.
Dai D, & Fan M. 2011. Investigation of the Dislocation of Natural Fibres by Fouriertransform
Infrared Spectroscopy. Spectroscopy, Vol.55, No.2, pp. 300-306
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.